Tblisi Flood 2015

Initial findings and recommendations

Karen Bennett Jolene Gosselin-Campbell Liz Schnackenberg

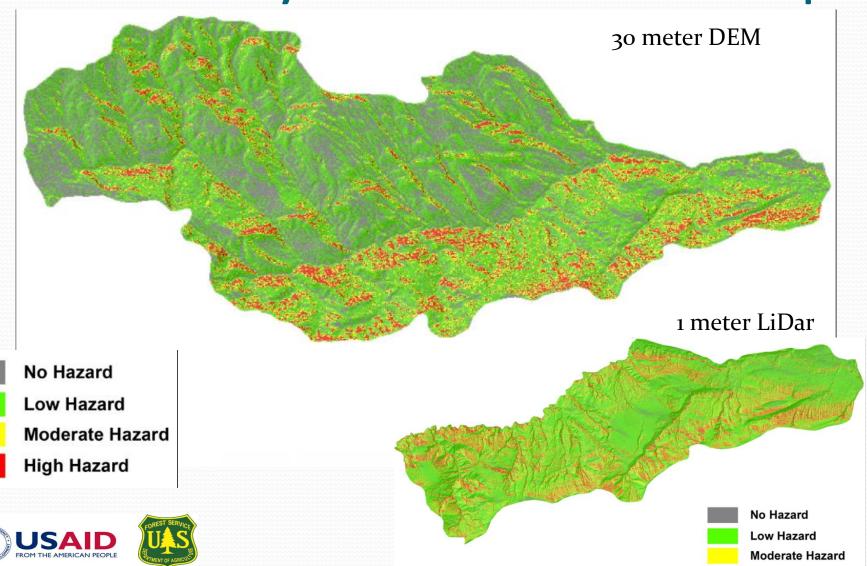
Emergency Assessment Process

- Site Assessment
 - Field review of Vere River watershed
- Storm Damage Assessment
- Understanding Values
- Future Threats Assessment
- Response Actions
 - Immediate Mid-term Long-term
 - Tool Box

Approach to understanding watersheds

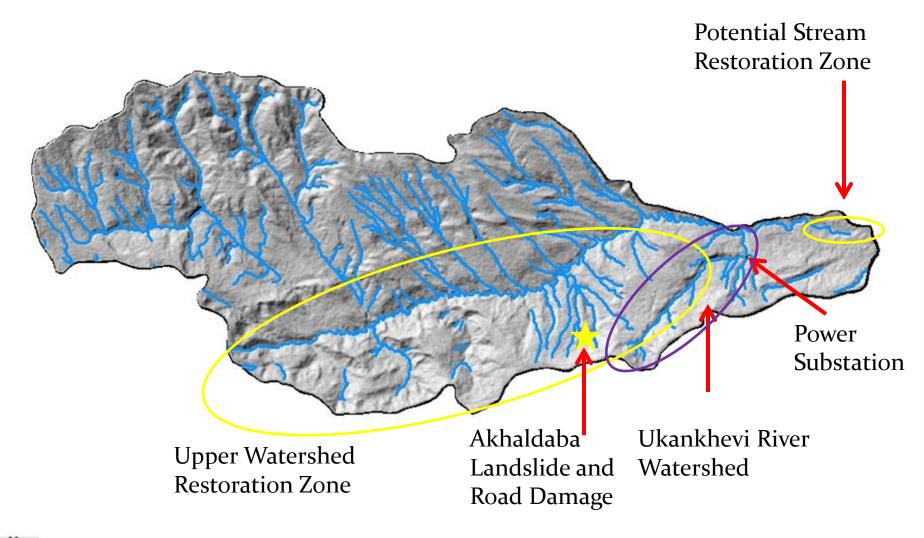
- Inherent Characteristics
 - Inherent geology/geomorphology/soils
 - Climatic drivers
 - Stream channel geomorphic characteristics
 - Vegetation patterns
- Human Influences/Alterations
 - Roads,
 - Infrastructure: housing, facilities,
 - Landuse (alterations of native ecosystems)

Geology


Fragile Bedrock

Layers Parallel Slope

Preliminary Landslide Risk Map


Dynamic Stream Channel

- Confined valley form limits flood plain development
- High sinuosity (natural energy dissipation)
 - Driven by geology
 - Natural down-cutting and erosion of outer meander
- Braided stream channel excess sediment

Vere River Watershed

0 0.5 1 2 3 4 Miles 1:120.0

Storm Impact Assessment

- Tiblisi City
 - Tunnels/Culverts -
 - blocking/accelerating flows
 - Inundation
 - Deposition/Scour
 - Backwater at Mtkvari
 - Infrastructure Loss
 - Housing, Roads
 - Utility power, sewer, water supply
 - Zoo

Storm Impact Assessment

- Upper Watershed
 - Storm flow from headwaters
 - Multiple landslides (100 s)
 - Loss/erosion of roads/housing
 - Heavy sediment loads, bedload moving high in water column
 - Landslides bulked flow, temporarily backed up mainstem
 - Streamside trees stored debris

Storm Damage Assessment

- UkanKhevi River
 - Sediment blocked culvert => infrastructure
 - Earthflow
 - Rockslide / channel blockage
 - Piping within electricity sub-station facility

Understanding Values

- Human life and safety
- Property
- Access needs
- Sustainable Infrastructure
- Cultural Resources

On-going Threats/Risks

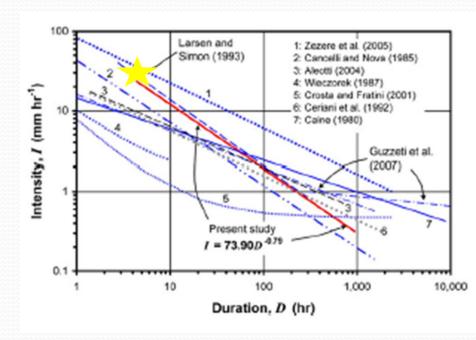
- Landslides
 - Scour potential
 - River blocking potential => dambreak floods
 - Sediment loading
- Floods
- Earthquakes
- Human encroachment on streams and unstable areas

Prioritization of Actions

Probability of	Magnitude of Consequences				
Damage or	Major	Moderate	Minor		
Loss	RISK				
Very Likely	Very High	Very High	Low		
Likely	Very High	High	Low		
Possible	High	Intermediate	Low		
Unlikely	Intermediate	Low	Very Low		

<u>Probability of Damage or Loss</u>: The following descriptions provide a framework to estimate the relative probability that damage or loss would occur within 1 to 3 years (depending on the resource):

- Very likely. Nearly certain occurrence (90% 100%))
- Likely. Likely occurrence (50% 89%)
- Possible. Possible occurrence (10% 49%)
- Unlikely. Unlikely occurrence (0% 9%)

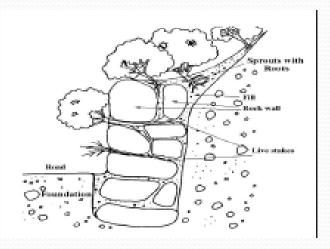

Action/Risk Response Table

Recommendation	Probability of damage or loss without recommendation	Magnitude of Consequences	Risk Reduction Rating	Pros	Cons
Streamside Management Zone (SMZ)	Very High	Major	High- threat to life and property removed	Can be rapidly developed, low potential for failure	Displacement of existing homes, businesses, and other infrastructure; cost of relocation
Vere River restoration in Tbilisi	High	Major	Moderate: some flooding	Natural stream function	High cost; displacement of existing

- Have a comprehensive plan!
- Establish an early warning system (precip, streamflow, landslide) with notification
- Establish and enforce policy to regulate streamside development
- Establish road standards and a permitting system
- Develop a site specific landslide risk map, warn communities/individuals of impending risk

Source: Dahal 2014

- Tblisi City
 - Determine support for restoring natural stream function
 - Prepare holistic design for restoration of green corridor
 - Disconnect water and sewage system


Up to 50% of the mainstem Vere River is in tunnels through the city

- Ukankhevi River
 - Remove rockfall blocking river, clear from top down
 - Stabilize earthflow
 - Check headward erosion
 - Protect existing infrastructure
 - Electricity Sub-station

- Upper Watershed
 - Close main Hwy Tskneti Hwy establish alternate route
 - Assess stability of Akhaldaba landslide and adjacent area
 - Remove hazards
 - Consider threats to community /lower road
 - Consider alternate access route
 - Use sustainable and safe construction techniques even for temporary fixes (BMPs)
 - Install drainage on road system

Mid->Long-Term Response Actions

- Tblisi City
 - Determine maximum probable floods
 - size remaining culvert or install bridges to pass water, sediment and debris
 - Allow river/floodplain access
 - Create holistic design for stream corridor restoration
 - Implement stream restoration plan
- Ukankhevi River
 - Develop plan to move or protect or move the electric sub-station
- Upper Watershed
 - Land use planning and zoning regulated and enforced
 - Reestablish native forests, protect them from grazing
 - Undertake comprehensive road management planning

Conclusions

- Opportunity to plan for the future you want, develop comprehensive plans
- Institute legislation to regulate development and growth – protect streams
- Use green infrastructure to restore watershed conditions and reduce peak storm flows in the watershed

Discussion and Feedback

Assets at Risk

- Infrastructure in the stream channel
 - Roads, Culverts, Houses, Cemeteries, Zoo
 - Utilities
 - Electricity substation
 - Water Supply
 - Sewage
 - New Road, Land-bridge, Zoo,
- Housing and infrastructure within landslide zones
- Sustainable roads systems
 - Construction techniques and road drainage

