The Future of Seismic Geo-Forensics

(which would make us the Seismic Geo-Forensics Working Group as opposed to Geo-Recon Working Group)

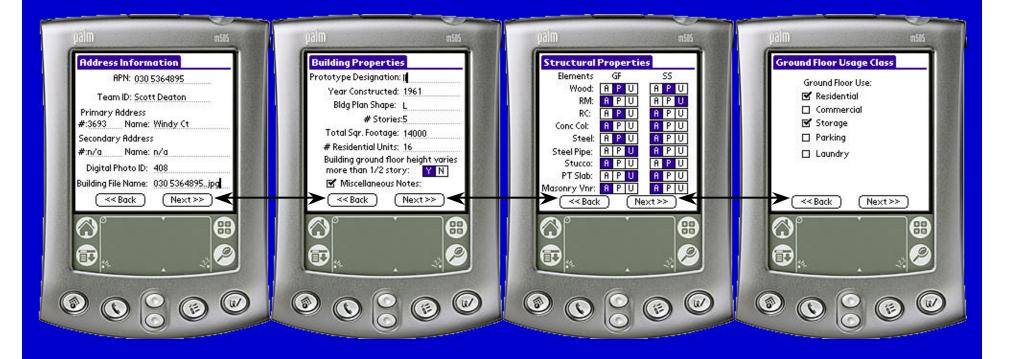
J. David Frost, Ph.D., P.E., P.Eng. Georgia Institute of Technology

Traditional Field Data Collection

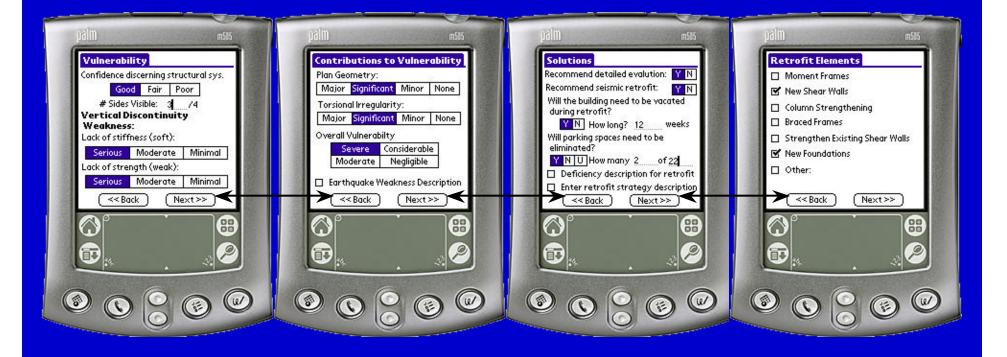
Technology for "Smart" Engineer

Field Reconnaissance Equipment

Analysis & Data Reduction Equipment



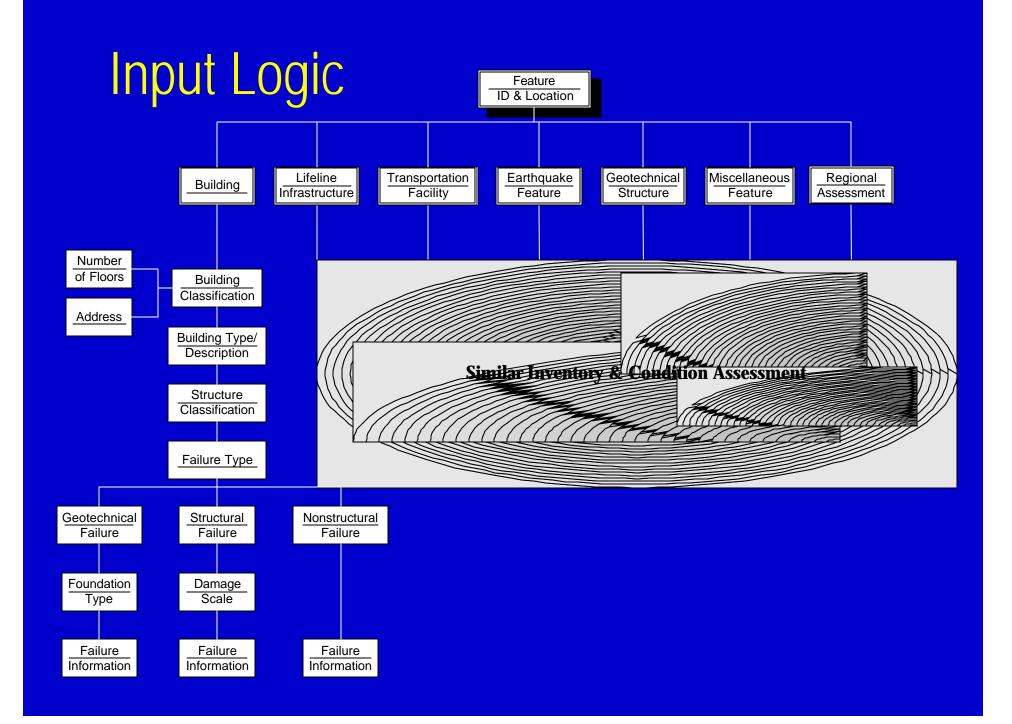
"Soft-Story" Inventory


PSoft[™] Overview

- Utilized for rapid pre-event screening of buildings with a potential soft story for municipal program.
- Software based on a form that city engineers created
- Types of data recorded
 - Building/structure properties
 - Usage (know where to search for survivors)
 - Vulnerabilities
 - Possible solutions/retrofit
- Upload field data into Access database

PSoft[™] Example

PSoft[™] Example (cont.)


Earthquake Damage Reconnaissance

PQuake[™] Overview

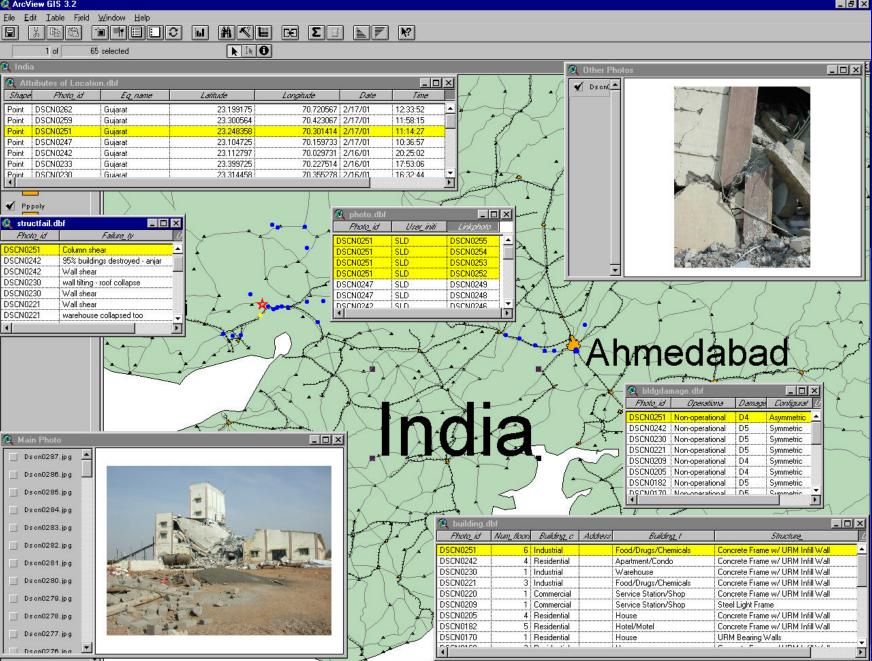
- Integrated data acquisition and analysis software
- Record feature and/or area damage
- Links location, photographic and other digital data
- Keeps engineer "within data loop"
- Facilitates consistent/complete data
- Upload data into GIS extension

PQuake[™] Data Categories

Bu	Building		Lifeline Infrastructure		e	Transportation Facility				
Residential Commercial Industrial Religious Government Educational			Water Sewer Gas Telecom Electrical			Road Rail Bus Ferry Port Airport				
Geotechni Structur			quake iture			eous re		Regional Assessment		
Dam/Leve Retaining V Landfill Embankme Cut Slop	Vall ent	Landslide Fault Rupture Circular Sand Blow Linear Sand Blow Ground Cracking Lateral Spread			Seismograph Wall			Block Street District Village Town City		

Dam Failure Example

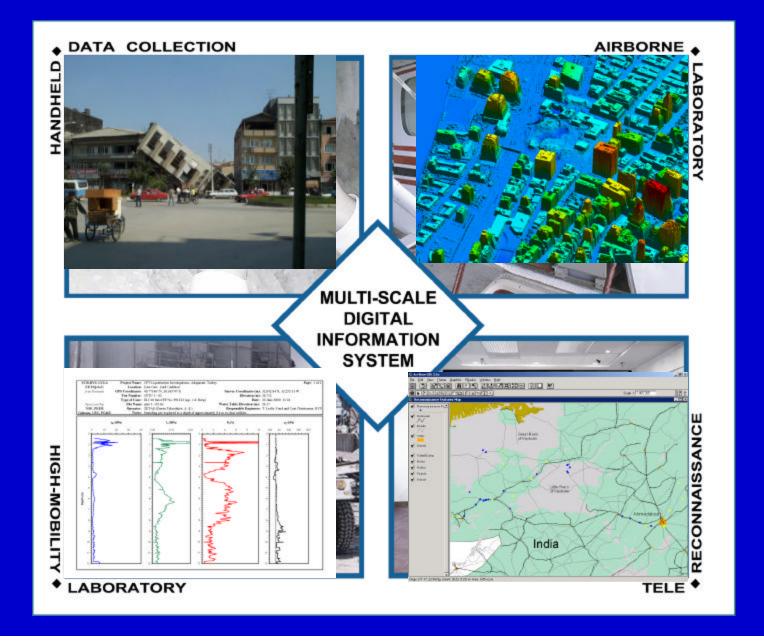
ArcGIS[®] Extension


- Rapidly assimilate data from multiple users
- Ouery data based on information type
 - e.g. Select all 5 story buildings that collapsed from soft story failure
 - e.g. Show location of all sand blow features
- Ouery individual features
- Create comprehensive maps of damage sites
- Real-time reconnaissance planning
- Integrated transfer of data to "home base"

PQuake[™] Event Query

Query										
Feature TypeGeneral										
C All	Γu	lser	🗖 Date 🗍							
Building	Feature Clas	sification	Number of Floors							
C Lifeline Infrastructure	🔽 Residential		C All							
C Transportation Facility	Commercial		C =							
C Geotechnical Structure	Industrial		C >=							
C Earthquake Feature	Religious		C <= OR							
C Miscellaneous Feature	☐ Government									
C Regional Assessment	🗖 Educatio	nal								
Structure Type	17									
🗖 Wood - Light Frame		🗖 Concrete Shear Walls								
🗌 🗆 Wood - Commercial Indu	strial	Concrete Frame w/ URM Infill Wall								
🗖 Steel Moment Frame		Precast-Conc Tilt-up Walls								
🗖 Steel Braced Frame		Precast-Conc Frm w/ Conc Shear Walls								
🗖 Steel Light Frame		🗖 RM Bear Wall w/ Wood or Metal Diaph								
🗖 🗖 Steel Frame w/ Conc She	ar Walls	🗖 RM Bear Wall w/ Precast Conc Diaph								
🗖 Steel Frame w/ URM Infill	Walls	🗖 URM Bear	ing Walls							
Reinf Conc Moment Resisting Frame Mobile Home										
Failure Type:										
C All C Structur	al () Geotechnic a	l O Non-Structural							
Insufficient reinforcement Brace buckling										
Column shear Connection										
🗖 Column rotate										
Plastic hinge Wall shear										
Plastic deform Soft story										
Slide off found.										
Shear wall crack Weld damage										
Shear wall bend Spalls/cracks										
	Shear wall joint Short column									
Brace vielding Racking										
Run Query Save Current Query Exit										
of records selected.										

ArcView GIS 3.2


Origin: (71.14, 22.22) dg Extent: (81.30, 42.34) mi Area: 3,442.17 sq mi

PQuake[™] Feature Query

Beyond Handheld Systems

Next Generation...

Importance of Seismic Geo-Forensics

- Proposed approach opens up new opportunities for integration of forensic studies in education and research
- Ability to involve larger "Response Team" than those operating in immediate earthquake zone
- Ability to "take" students to site and show them consequences of poor engineering and/or unanticipated loading conditions

Research Issues

- Data collection protocols and standards
- Platform software development
- Multi-scale system integration
- Tele-reconnaissance
- Information compression and transmission
- Simulation analysis and feedback

Conclusions

- All forensic engineering studies rely on information.....
- Digital technologies offer key to ensuring information of highest quality in sufficient quantity is available in a timely manner.....
- Need to develop protocols for data collection and information archiving.....
- Forensic education can be significantly enhanced by adoption of these technologies into practice.....

Thank you.