

Geotechnical Aspects of the August 15, 2007 Mw 8.0 Pisco, Peru Earthquake: Preliminary Observations

Presented by

Adrián Rodríguez-Marek

Washington State University

GEESD IV May 20, 2008

Reconnaissance Team

- Adrian Rodriguez-Marek, Washington State University
- Brady Cox, University of Arkansas
- Jorge Meneses, Kleinfelder
- Viviana Moreno, Catholic University of Peru
- Manuel Olcese, Catholic University of Peru
- Rodolfo Sancio, Golder Associates
- Joseph Wartman, Drexel University
- Jorge Alva-Hurtado, Universidad Nacional de Ingeniería

Funding from:

- National Science Foundation through the Geotechnical Earthquake Reconnaissance Organization (GEER)
- Earthquake Engineering Research Institute (EERI)

GEER Geo-Engineering Earthquain Recognitionace Turning Cleaster into Kacolodge

Outline

- General Information
- Ground Motions
- Liquefaction observations
 - Spatial distribution
 - Case histories
- Canchamaná Lateral Spread
- Landslides

Tectonic Setting

Seismological Information

Ji and Zeng (USGS)

- Date: August 15, 2007
- Magnitude: Mw = 8.0
- Type: Interface subduction event
- Hypocentral depth = 39 km
- Fault dimensions:
 - 190 km along strike
 - 95 km down dip

Overview

- Severe damages in cities of Pisco, Ica, Chincha Alta
 - 519 people were confirmed dead
 - 42 more unaccounted for and 1,874 reported injured
 - 54,926 buildings were destroyed
 - 20,958 buildings were damaged
- Extensive damage to transportation infrastructure

Shaking Intensity

Prompt Assessment of Global Earthquakes for Response (PAGER)

PAGER V2(Thu Aug 16, 2007, 12:26:04 PM GMT)

M8.0 NEAR THE COAST OF CENTRAL PERU

S13.32 W76.50 30.2km Wed Aug 15, 2007 11:40:58 PM GMT

Population exposed to shaking

(Data from LandScan 2003)

MMI Intensity	Population
VIII	583,000
VII	846,000
VI	8,410,000*

Pisco

Recorded Ground Motions

16 Ground motions within 150 km of fault plane

Parcona Record (ICA)

- Distance = 39.4 km
- Instrument on soil
- PGA = .498g
- Duration = 86 s

CERESIS Record (Lima)

- Distance = 102 km
- Instrument on v. stiff soil
- PGA = .06 g
- Duration = 101 s

Rimac Record (Gravel)

Callao Record (Soft Soil)

Response Spectra in Lima

Liquefaction Observations

Las Lagunas

Liquefaction Observations

Road embankment failures

Road embankment failures

Liquefaction Observations

Canchamana Landslide Complex

Believed to be the largest lateral spread ever documented

Area ~ several km²

Lateral deformations in the order of 6 m?

CROSS SECTION A-A

Canchamaná Lateral Spread

South End

Liquefaction Observations

Tambo de Mora

Tambo de Mora

- Large settlements over an area of about 4 city blocks
- Well delimited area of settlements: across the street we saw well performing houses
- One case of ejecta of low plasticity clay

Tambo de Mora

Liquefaction Observations

General San Martin Port

General San Martin Port

General San Martin Port

0.5 m lateral displacement of wharf deck

Landslides

- Estimated thousands of landslides (disrupted landslides including rock falls, rock slides, soil falls, soil avalanches, and disrupted soil slides)
- Highway department: rockfalls occurred as far a north as 700 km from the fault plane (small rock falls)
- Culprit of many road closures

Comparison with landslides from other events

Shallow soil slides

Rock slides, falls and avalanches

Disrupted rock/soil slides (rock in soil matrix)

Landslides on natural terrain

Conclusions

- Extensive liquefaction over a widespread area
- Interesting
 - Very large lateral spread
 - Settlement of nearly 1 m of light structures
- Heavy structural damage
 - Mostly to adobe construction
- Recorded time histories
 - Long!
 - Two-phase motion (how does this affect liquefaction?)

Preliminary report:

http://gees.usc.edu/GEER/recent_geotechnical_en gineering.htm

THANK YOU

